
Orca-Math: Unlocking the potential of
SLMs in Grade School Math

Arindam Mitra∗, Hamed Khanpour, Corby Rosset, Ahmed Awadallah

Microsoft Research

Abstract

We show that an SLM can reach ∼ 87% pass@1 on GSM8K while trained on only 200K
synthetic math problems. Mathematical word problem-solving has long been recognized as
a complex task for small language models (SLMs). A recent study hypothesized that the
smallest model size, needed to achieve over 80% accuracy on the GSM8K benchmark, is
34 billion parameters. To reach this level of performance with smaller models, researcher
often train SLMs to generate Python code or use tools to help avoid calculation errors.
Additionally, they employ ensembling, where outputs of up to 100 model runs are combined
to arrive at a more accurate result. Result selection is done using consensus, majority vote
or a separate a verifier model used in conjunction with the SLM. Ensembling provides a
substantial boost in accuracy but at a significant cost increase with multiple calls to the
model (e.g., Phi-GSM uses top-48 to boost the performance from 68.2 to 81.5, [38] uses
top-100 to boost LLAMA-2’s performance from 38.6% to 71.9%).

In this work, we present Orca-Math, a 7-billion-parameter SLM based on the Mistral-7B,
which achieves 86.81% on GSM8k without the need for multiple model calls or the use of
verifiers, code execution or any other external tools. Our approach has the following key
elements: (1) A high quality synthetic dataset of 200K math problems created using a multi-
agent setup where agents collaborate to create the data, (2) An iterative learning techniques
that enables the SLM to practice solving problems, receive feedback on its solutions and
learn from preference pairs incorporating the SLM solutions and the feedback. When trained
with Supervised Fine-Tuning alone, Orca-Math achieves 81.50% on GSM8k pass@1 metric.
With iterative preference learning, Orca-Math achieves 86.81% pass@1. Orca-Math surpasses
the performance of significantly larger models such as LLAMA-2-70B, WizardMath-70B,
Gemini-Pro, ChatGPT-3.5. It also significantly outperforms other smaller models while
using much smaller data (hundreds of thousands vs. millions of problems).

∗Correspondence to arindam.mitra@microsoft.com

ar
X

iv
:2

40
2.

14
83

0v
1

 [
cs

.C
L

]
 1

6
Fe

b
20

24

1 Problem Setup

Frontier Language Models such as GPT-4 [1] have demonstrated capabilities previously
unseen in smaller models, most notably the remarkable ability to reason (e.g. mathematical
reasoning that requires both language comprehension and mathematical understanding).
These capabilities have been largely attributed to the very large scale the model size, the
dataset size and ultimately the amount of compute needed for training.
Several recent studies have focused on improved the reasoning abilities of small language
models (SLMs). Despite that the extent to which scale is needed for achieving reasoning
capabilities is still an open research question.
One of the promising directions of improving the reasoning capabilities of SLMs is using
frontier language models, such as GPT-4, to create tailored and high-quality synthetic data
that can be used to train the SLM. The high quality of the training data and the ability
to elicit richer learning signals (e.g. explanations) have been show to significantly improve
SLMs abilities in acquiring skills that had only emerged before at much larger scale.
This paradigm fits under a teacher-student approach where the large model (the teacher) is
creating demonstrations for the SLM (the student) to learn from. In this work we further
explore this direction with focus on mathematical reasoning on grade school math world
problem, using the popular GSM8K benchmark.
Several other studies have demonstrated positive results on GSM8K recently with SLMs, e.g.
Phi-GSM [21], OVM [38], etc. However, many of them employ ensembling, where outputs of
up to 100 model runs are combined to arrive at a more accurate results. Result selection is
done using, consensus, majority vote or by using a separate a verifier model to score/verify
the outputs and select the best answer. Ensembling provides a substantial boost in accuracy
(e.g., Phi-GSM uses top-48 to boost the performance from 68.2 to 81.5, [22] uses top-100
to boost LLAMA-2’s performance from 38.6% to 71.9%). However it comes at a significant
increase in cost with multiple calls to the model, generating and verifying a 100 different
solutions requires 200 different calls to the models. Additionally, some of them use very
larger amounts of data (e.g. 12M for Phi-GSM) or use tools or code to avoid calculation
errors.
In this work, we extend the teacher-student paradigm to an iterative learning settings with
high-quality synthetic training data as follows:

• We create Orca-Math-dataset, a synthetic dataset of 200K math problems, paired
with GPT-4-Turbo solutions. The dataset was generated using an agent-based setup,
hereby referred as, Agent-Instruct, that not only paraphrases existing problems but
aims to expand the problem set both in diversity and difficulty.

• We introduce an iterative learning procedure where we: (1) use the dataset for
supervised finetuning to train the SLM on demonstrations, (2) allow the SLM to
practice generating multiple solutions and (3) use the teacher to provide feedback to
the student. The feedback comes in the form of evaluating the solutions generated
by the student or providing a teacher solution.

With the supervised finetuning alone, we achieve 81.50% on GSM8k at pass@1 metric. The
iterative learning loop further improves the pass@1 to 86.81%. without the need for multiple
model calls or the use of verifiers, code execution or any other external tools. The model
exceeding much bigger models like LLAMA-2-70B (56.8%) , WizardMath-70B (81.6%),
Gemini Pro (86.5% with 32 trials) and GPT-3.5 (77.4%). Most notably it can reach this
level with only 200K examples (orders of magnitude less than other datasets).

2

Model Base model Model size Answer format Eval method GSM8K (%)

Llama-2 [34] -
7B

nlp pass@1
14.6

13B 28.7
34B 42.2
70B 56.8

MetaMath [39] Llama-2
7B

nlp pass@1
66.5

13B 72.3
70B 82.3

WizardMath [23] Llama-2
7B

nlp pass@1
54.9

13B 63.9
70B 81.6

MAmmoTH [42]
Code-Llama 7B

code pass@1
59.4

Code-Llama 12B 64.7
Code-Llama 34B 72.7
Llama-2 70B nlp 76.9

Mistral [14] - 7B nlp maj1@8 52.2
8×7B 58.4

OVM [38] Llama-2 7B+7B nlp verify100@1 73.7
Mistral 7B+7B 84.7

Llemma [4] Llama-2 7B nlp pass@1 36.4
34B 51.5

ToRA-Code [12] Llama-2
7B

code COT@1
72.6

13B 75.8
34B 80.7
70B 84.3

Orca 2 [27] Llama-2 7B nlp pass@1 55.72
13B 65.73

Gemini Pro - - nlp maj1@32 86.5
Gemini Ultra [11] 94.4
GPT-3.5-0613 - - code pass@1 77.4
GPT-4-0613 [29] 97.0
Phi-1.5 [19] - 1.3B code pass@1 44.6

Phi-GSM [21]
Phi-1.5-tiny 125M

code pass@1
63.1

Phi-1.5-small 350M 65.9
Phi-1.5 1.3B 68.2
Phi-2 2.7B 74.3

Phi-GSM+V [21]
Phi-1.5-tiny 125M+125M

code verify48@1
68.9

Phi-1.5-small 350M+350M 71.3
Phi-1.5 1.3B+1.3B 81.5

Orca-Math Mistral 7B nlp pass@1 86.81

Table 1: Results on GSM8K. The table is repurposed from [21]. Bold labels indicate
accuracies exceeding 80%. The term ’8×7B’ represents a blend of 8 experts, with each
expert having 7B parameters. ’7B+7B’ refers to the union of a 7B generation model and a
7B verification model. The addition of verifier models is signified by ’+V’.

3

2 Dataset Construction: Agent-Instruct

The goal of this step is to create a diverse set of grade school math word problems that
contains both easy and hard problems. Towards this goal we create a variety of agents.

Seed Set We start by collecting sample math word problems from existing open-source
datasets, namely NumGLUE [26], AddSub [13], ALGES [17], ASDiv [24], DRAW [35],
GSM8k [7], MATHQA [2], MultiArith [32], SingeOP [33], SingleEQ [16], and SVAMP [30].
We collect a total of 36, 217 problems. We utilize the Lila [25] benchmark to collect the
datasets. Specifically, we collect problems from the train and validation splits from Lila to
construct the seed set. Interested readers, please refer to Lila [25].

Agent - Ask Me Anything We expand the seed set by creating multiple word problems
from each problem in the seed set. We utilize the subsequent prompt for problem creation.

Your goal is to create multiple word problems from a given word problem and
its answer. First convert the question of the word problem into a statement.
Then for each number in the converted problem create a new word problem.
Here are some examples:
Example 1: Q: Natalia sold clips to 48 of her friends in April, and then she sold half as
many clips in May. How many clips did Natalia sell altogether in April and May?
Answer: 72
Replacing question with statement: Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. Natalia sold altogether 72 clips in April and
May.
All questions:
<target> 48
<question> Natalia sold clips to some of her friends in April, and then she sold half as
many clips in May. Natalia sold altogether 72 clips in April and May. How many clips
did she sell in April?
<target> half
<question> Natalia sold clips to 48 of her friends in April, and then she sold some clips
in May. Natalia sold altogether 72 clips in April and May. What is the ratio of the
number clips sold in April to number clips sold in May?
<target> 72
<question> Natalia sold clips to 48 of her friends in April, and then she sold half as
many clips in May. How many clips did Natalia sell altogether in April and May?
Example 2: Q: Weng earns $12 an hour for babysitting. Yesterday, she just did 50
minutes of babysitting. How much did she earn?
Answer: 10
Replacing question with statement: Weng earns $12 an hour for babysitting. Yesterday,
she just did 50 minutes of babysitting. She earned $10.
All questions:
<target> 12
<question> Weng earns a certain amount per hour for babysitting. Yesterday, she just
did 50 minutes of babysitting and earned 10. How much does she earn per hour?
<target> 50
<question> Weng earns 12 an hour for babysitting. Yesterday, she just did some
babysitting and earned 10. How much time did she spend on babysitting?

4

<target> 10
<question> Weng earns 12 an hour for babysitting. Yesterday, she just did 50 minutes
of babysitting. How much did she earn?
Example 3: Q: Betty is saving money for a new wallet which costs 100. Betty has only
half of the money she needs. Her parents decided to give her 15 for that purpose, and
her grandparents twice as much as her parents. How much more money does Betty need
to buy the wallet?
Answer: 5
Replacing question with statement: Betty is saving money for a new wallet which costs
100. Betty has only half of the money she needs. Her parents decided to give her 15 for
that purpose, and her grandparents gave her twice as much as her parents. She needs 5
more to buy the wallet.
All questions:
<target> 100
<question> Betty is saving money for a new wallet. Betty has only half of the money
she needs. Her parents decided to give her 15 for that purpose, and her grandparents
twice as much as her parents. She needs 5 more to buy the wallet. What is the cost of
the wallet?
<target> half
<question> Betty is saving money for a new wallet which costs 100. She has some
money saved, her parents decided to give her 15, and her grandparents gave her twice as
much as her parents. Now, Betty needs 5 more to buy the wallet. What is the ratio of
the money Betty have saved initially to the cost of wallet?
<target> 15
<question> Betty is saving money for a new wallet which costs 100. She has half of the
money she needs, her parents decided to give her some money, and her grandparents
gave her twice as much as her parents. Now, Betty needs 5 more to buy the wallet. How
much money did her parents give her?
<target> twice
<question> Betty is saving money for a new wallet which costs 100. Betty has only half
of the money she needs. Her parents decided to give her 15 for that purpose, and her
grandparents also chipped in. Now, Betty needs 5 more to buy the wallet. What is the
ratio of the amount given by her grandparents to the amount given by her parents?
<target> 5
<question> Betty is saving money for a new wallet which costs 100. Betty has only half
of the money she needs. Her parents decided to give her 15 for that purpose, and her
grandparents twice as much as her parents. How much more money does Betty need to
buy the wallet?
Now solve this:
Example 4: Q: Your teacher is giving a test worth 200 points. There is a total of 30
5-point and 10-point questions. How many 5-point questions are on the test? Answer:
20

Note that, the “Ask Me Anything" agent is generating problems based on the seed in Example
4. Examples 1 to 3 are provided as few-shot demonstrations. This agent creates a total of
120, 445 new problems. It is important to note that all the generated problems exhibit a
similar narrative to that of the seed word problem. The solutions to these word problems
are generated using GPT4-Trubo.

5

Agent - Suggester & Editor We further expand the seed set by developing challenging
problems. To achieve this, we introduce two new agents, namely Suggester and Editor. This
setup involves the establishment of a team of agents working collaboratively to create a
dataset geared toward a predefined objective. In this instance, the objective is to modify an
existing problem to increase its difficulty.
The Suggester examines a specific problem and proposes several methods for enhancing its
complexity without creating the actual problem. Subsequently, the Editor takes the original
word problem and the Suggester’s recommendations to generate an updated, more challenging
problem. This iterative process can occur over multiple rounds, with each round further
increasing the complexity of the previously generated problem. We utilize the AutoGen
[37] framework to implement the multi-agent workflow. Here is an example of the iterative
process:

Seed Problem: Every hour Joanne has to collect the coins out of the fountain inside
the mall. During the first hour, she collected 15 coins. For the next two hours, she
collected 35 coins from the fountain. In the fourth hour, she collected 50 coins from the
fountain but she gave 15 of them to her coworker so she could buy a soda. How many
coins did she have after the fourth hour?
Suggester: Increase the number of hours, add more variables for each hour, and
incorporate additional transactions.
Editor: Every hour, Joanne has to collect the coins from two separate fountains inside
the mall - Fountain A and Fountain B. During the first hour, she collected 20 coins from
Fountain A and 30 coins from Fountain B. In the next hour, she collected 25 coins more
than she collected in Fountain A during the previous hour and 10 coins less than she
collected in Fountain B during the previous hour. In the third hour, she collected the
same number of coins in Fountain A as she collected in the second hour and additional
45 coins this time from Fountain B. During the fourth hour, she collected 90 coins in
total, but she gave 20 coins to her coworker to buy a soda and 40 coins to another
coworker to buy a meal. After the fifth hour, Joanne decided to donate 15
Suggester: Incorporate more fountains, increase the duration, and add more complex
calculations for coins collected and spent or donated.
Editor: Joanne has to collect coins from four separate fountains inside the mall -
Fountain A, Fountain B, Fountain C, and Fountain D every hour for 8 hours. In the
first hour, she collects 20 coins from Fountain A, 30 coins from Fountain B, 40 coins
from Fountain C, and 50 coins from Fountain D. In the subsequent hours, her collections
have the following fluctuations:

• For Fountain A, she collects 10 more coins each hour than she collected in the
previous hour.

• For Fountain B, her collections decrease by 5 coins each hour compared to the
previous hour.

• For Fountain C, she collects double the number of coins each hour compared to
the number of coins collected in Fountain A the same hour.

• For Fountain D, the number of coins collected remains constant at 50 coins each
hour.

At the end of the third hour, she donates 20
During the seventh hour, she has to share coins with her coworkers and splits them as
follows: 15 coins for coworker one, 20 coins for coworker two, and she keeps 70
After 8 hours, Joanne decides to count her collected coins. How many coins did she have
at the end of the eighth hour?

6

We allow two rounds of iterations per problem and filter problems where the GPT4-turbo
generated answer exceeds 1800 characters. At the end of this process, we collect 37, 157
problems.

DMath Furthermore, we include 6, 216 problems sourced from DMath [15]. These problems
represent a subset of the 7, 943 problems present in the DMath training set, in which the
solution computed by GPT4-Turbo aligns with the precise gold-standard answer.

3 Training

3.1 Supervised Fine-Tuning Experiment (Iteration #1)

We finetune Mistral-7B on the Orca-Math-200K dataset. We have not used packing. The
data is presented in the following instruction format:

USER:\n{question}\n\nASSISTANT:\n{answer}

The loss is computed only on the answer tokens. We employ a constant learning rate of
1 × 10−6. The per-device batch size is set to 3. Training is conducted for one epoch on eight
A100 nodes, with each node containing eight GPUs.

3.2 Iterative Learning from both Positive and Negative Signals

Dataset Construction Iteration #2 To generate additional positive and negative
solutions for each problem, we sample four responses from the SFT-tuned model from
iteration #1. Specifically, we utilize top_p = 0.95 and temperature = 0.7. This process
results in a dataset where each of the 200, 000 problems has one GPT4-Turbo generated
solution and four student-generated solutions. Subsequently, we employ the prompt defined
in GPT4-Based-Exact-Match (See section 4 for details) to assess the alignment between
the teacher’s (GPT4-Turbo) answer and the student’s answer. For all solutions where the
student-generated answer does not match the teacher’s answer, we label them as negative;
otherwise, we label the solution as positive. We then construct the preference dataset as
follows:

• For each question, qi we construct q+
i , the set of all positive solutions for qi. We

treat the teacher solution as positive, thus this set by construction contains at least
one element.

• For each question, qi we also construct q−
i , the set of all negative solutions for qi.

This set can be empty if all the 4 responses are are aligned wrt the teacher’s solution.
Infact, this is the case for around 80k questions. For such situations, we randomly
sample one response from q−

j for 4 different qj where j ̸= i and |q−
j | > 0. Note that,

for this special situation |q+
i | = 4.

• Let, Qi = {(qi, a+
i , a−

i)|(a+
i , a−

i) ∈ q+
i × q−

i } be the preference dataset around qi.
The final preference dataset is created by taking the union of Qi for all qi in the
training dataset.

Dataset Construction Iteration #3 Let M2 denote the model trained with KTO
[10] on the dataset constructed for Iteration #2. We replicate the same procedure for the
construction of dataset for Iteration #3; however, we utilize M2 to generate the four responses
instead of the SFT-tuned model from iteration #1.
To learn from both positive and negative feedback, we have evaluated the performance of
two algorithms: the Direct Preference Optimization (DPO) as described by [31] and the
Kahneman-Tversky Optimization (KTO) introduced by [10]. DPO is a simple and popular
approach for efficiently fine-tuning language models to align with preferences. Additionally,

7

we have explored the capabilities of KTO, which distinguishes itself by requiring only a
binary “yes” or “no” response to assess the quality of an output.

4 Evaluation

We use exact match as the metric. Given a model generated answer, we prompt GPT4 to
extract the final short answer and match it with the gold short answer. We will refer to this
metric as, GPT4-based-Exact-Match. The following figure shows the prompt template:

SYSTEM
As an expert Math teacher, your role is to evaluate a student’s answer to a word problem.
The problem is accompanied by a correct solution provided by the problem setter. It is
important to remember that there may be various methods to solve a word problem, so
the student’s steps might not always align with those in the problem setter’s solution.
However, the final answer, typically a number, should be unique and match the problem
setter’s answer. Your task involves analyzing the student’s solution to identify any
mistakes and determine whether the answer can be modified to correct the error. If the
student’s answer is unfixable, consider creating practice problems to help improve their
understanding.
Use the following format:
Error Analysis: In one sentence, extract the final answer from the problem setter’s
solution and compare it with the student’s answer. Do they match?
Final Verdict: Correct/Incorrect
USER
Question: Billy is volunteering his time to help people do their taxes. He can help 2
people per hour for 3 hours a day. If he takes 20% of the days between March 1st and
April 19th off, and helps people on all the other days. How many people does he help?
(Remember there are 31 days in March.)
Problem Setter’s answer:
First find the number of days between March 1st and April 19th: 31 days + 19 days =
50 days
Then subtract the percentage of time Billy takes off from 100% to find the percentage
of time he works: 100% - 20% = 80%
Then multiply that number by 80% to find the number of days Billy works: 50 days *
80% = 40 days
Then find how many people Billy can help per day: 2 people/hour * 3 hours/day = 6
people/day
Then multiply the number of people he helps per day by the number of days he works
to find the total number of people he helps: 6 people/day * 40 days = 240 people
Student answer:
First, let’s calculate the total number of days between March 1st and April 19th.
March has 31 days, and April has 30 days. So, the total number of days from March 1st
to April 19th is:
31 (March) + 19 (April) = 50 days
Now, let’s calculate how many days Billy takes off. He takes 20% of the 50 days off.
20% of 50 days = 0.20 * 50 = 10 days
So, Billy takes 10 days off. This leaves him with: 50 days - 10 days = 40 days

8

Billy helps people for 3 hours a day, and he can help 2 people per hour. So, in one day,
he can help:
3 hours/day * 2 people/hour = 6 people/day
Now, let’s calculate how many people he helps over the 40 days he works:
40 days * 6 people/day = 240 people
Therefore, Billy helps 240 people.
ASSISTANT
Error Analysis: The student’s final answer of helping 240 people matches the problem
setter’s solution.
Final Verdict: Correct

5 Results

Table 2 captures the performance of several training procedures on the GSM8k test set
containing 1319 word problems. We finetune Mistral-7B for upto three iterations. In first
iteration we use supervised finetuning to obtain M1. For the second iteration we compare
SFT, DPO [31] and KTO. The KTO trained model performs better in this group. We call
this M2 and use M2 to generate the dataset for iteration #3. For third iteration, we compare
DPO and KTO where M2 servers as the starting point. We also compare these against three
epochs of SFT training on the Orca-Math-200K dataset. For all SFT training we employ a
constant learning rate of 1×10−6. The per-device batch size is set to 3 and number-of-epochs
is set to 1. For DPO and KTO training jobs, we set beta to 0.3, per-device batch size to 3,
gradient-accumulation-steps to 11 and number-of-epochs 1. For DPO and KTO training in
iteration #2 we employ a constant learning rate of 1 × 10−6 and for iteration #3 a constant
learning rate of 1 × 10−7.

Training Procedure Pass@1 Accuracy on GSM8K Test set
SFT (M1) 79.91
SFT (M1) → SFT 81.50
SFT (M1) → DPO 84.23
SFT (M1) → KTO (M2) 85.06
SFT (M1) → SFT → SFT 80.44
SFT → KTO (M2) → DPO 84.91
SFT → KTO (M2) → KTO (Orca-Math) 86.87

Table 2: Table captures the performance of several iterative learning experiments and
baselines on the GSM8k test set. SFT stands for one epoch of training on the Orca-Math-
200K dataset. SFT → SFT stands two epochs of training on Orca-Math-200K. SFT → DPO
(KTO) stands for one epoch of training on dataset for iteration #2 with DPO (KTO) starting
with M1. SFT → SFT → SFT stands for three epochs of training on Orca-Math-200K. SFT
→ KTO → DPO (KTO) stands for one epoch of training on dataset for iteration #3 with
DPO (KTO) starting with M2. For evaluation, we employ greedy decoding.

5.1 Ablation Studies

Model Generated Positives We study the impact model generated positives by limiting
q+

i to contain only teacher generated solution. In other words we remove any a+
i that is model

generated in the creation of the dataset for iteration #2. Table 3 shows the result of training
M1 with DPO and KTO on this dataset for one epoch. We reuse the hyperparameters for
iteration #2. Irrespective of the training algorithm, we see significant performance drop.

Synthetic Negatives The preference dataset creation involves synthetic negative creation
in the situation where all four responses generated from M1 or M2 are positive. We study

9

M1 → DPO 81.96 (−2.27)
M1 → KTO 82.79 (−2.27)

Table 3: Table captures that student generated positives provide important supervision.

the impact of these synthetic negatives by ignoring the questions, qi, where all sampled
responses are positive (Table 4). This reduces the number of questions for iteration #2 by
around 80k and for iteration #3 by around 104k.

M1 → DPO 60.73 (−23.5)
M1 → KTO 85.22 (+0.17)
M1 → KTO → KTO 85.44 (−1.43)

Table 4: Table shows that the inclusion of problems where all sampled responses are positive
is beneficial.

5.2 Math Benchmarks beyond GSM8k

Table 5 presents the performance of Orca-Math on several other word problem datasets.
For ease of evaluation, we selected datasets where the answer to each problem is a single
number. The test sets of the benchmarks are obtained from Lila. We employ the GPT4-based
exact-match metric, and model responses are generated using greedy decoding.

Test Set Orca-Math-Sft (M1) Orca-Math
Addsub 88.99 91.74
ASDiv 91.10 91.10
MultiArith 98.28 98.28
SingleOp 98.74 99.37
SinglEq 97.25 99.08
Svamp structured 87.63 91.30

Table 5: Performance of SFT trained model from Iteration #1 (M1) and Orca-Math on
AddSub, ASDiv, MultiArith, SingleOp, SinglEq, Svamp structured

5.3 Contamination Check

We never use the test split of GSM8K or any other datasets during training or as seeds for
synthetic problem generation. Nevertheless, We take the following approach for detecting
any potential text contamination.

1. We begin by preprocessing the texts, which includes converting all characters to
lowercase, removing punctuation, tokenizing the text into individual words, and
removing common English stopwords to ensure uniformity in the data.

2. We then vectorize our text corpus using the Term Frequency-Inverse Document
Frequency (TF-IDF) method and determine the cosine similarity between the test
and training sets, from which we select the top-k (k=10) most analogous questions
for each test query.

3. Finally, we evaluate the extent of text contamination by counting the number of test
questions with the highest n-gram overlap above a preset threshold of 0.5 with their
corresponding training set matches. We calculate the overlap of n-grams between
pairs of texts using the Jaccard similarity. To conduct a rigorous contamination
check, we set n=1. It is important to note that the n-gram overlap, when measured
using Jaccard similarity, is a non-increasing function of n.

4. Upon executing our algorithm, we determined that the count of test questions
exhibiting significant n-gram overlap is eight, thus indicating negligible text con-
tamination within our test set according to the defined threshold. When limiting the

10

train set to contain only the seed problems, the count of test questions exhibiting
significant n-gram overlap is seven. Note that, for n ≥ 2, the count of test questions
exhibiting significant n-gram overlap is zero.

6 Related Works

The generation of synthetic data through generative artificial intelligence (AI) models has
evolved rapidly. Numerous datasets [27, 20, 28, 23, 9, 8, 45, 6, 36] have been proposed
for both specialized and generic domains, with math-related datasets [40, 43, 44, 18] being
closely related to our work.
Learning from rich signals has also garnered significant attention recently. Several studies
[31, 10, 22, 3, 5, 41], have demonstrated the usefulness of preference learning. In this work, we
present a detailed analysis of agent-based synthetic data generation and iterative preference
learning in the grade school level math domain. Specifically, we demonstrate the robustness
of KTO over DPO and the effectiveness of using model-generated positives to improve model
training. We believe this is a preliminary step toward iterative learning and self improvement
of small language models in challenging domains.

7 Conclusions

Our study provides compelling evidence that the mathematical reasoning capabilities of Small
Language Models (SLMs) can be substantially enhanced. By employing iterative learning
techniques and leveraging both positive and negative signals, we have successfully surpassed
the previously perceived 80% barrier on the GSM8k benchmark. Our 7B model, trained
with 200K data, achieved an impressive 86.81% accuracy. Furthermore, the incorporation of
agents in dataset generation has proven to be a valuable approach, enabling the creation
of more diverse and interesting datasets. These findings not only highlight the potential
for significant improvements in SLM performance but also underscore the importance of
innovative learning strategies and dataset generation methods in advancing the creation of
powerful SLMs.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. arXiv preprint arXiv:1905.13319, 2019.

[3] Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,
Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning from
human preferences. arXiv preprint arXiv:2310.12036, 2023.

[4] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. arXiv preprint arXiv: 2310.10631, 2023.

[5] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[6] Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading
comprehension. arXiv preprint arXiv:2309.09530, 2023.

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv: Arxiv-
2110.14168, 2021.

11

[8] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback,
2023.

[9] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

[10] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

[11] Google Gemini Team. Gemini: A family of highly capable multimodal models.

[12] Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving.
arXiv preprint arXiv: 2309.17452, 2023.

[13] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 523–533, 2014.

[14] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv preprint
arXiv: 2310.06825, 2023.

[15] Jiwoo Kim, Youngbin Kim, Ilwoong Baek, JinYeong Bak, and Jongwuk Lee. It ain’t over: A
multi-aspect diverse math word problem dataset. In Houda Bouamor, Juan Pino, and Kalika
Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 14984–15011, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.927. URL https://aclanthology.org/2023.
emnlp-main.927.

[16] Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for
Computational Linguistics, 3:585–597, 2015.

[17] Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically
solve algebra word problems. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 271–281, 2014.

[18] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for "mind" exploration of large scale language model
society, 2023.

[19] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

[20] Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023.

[21] Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen,
Rachel Ward, and Yi Zhang. Tinygsm: achieving> 80% on gsm8k with small language models.
arXiv preprint arXiv:2312.09241, 2023.

[22] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

[23] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical rea-
soning for large language models via reinforced evol-instruct. arXiv preprint arXiv: 2308.09583,
2023.

[24] Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and
developing english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

12

https://aclanthology.org/2023.emnlp-main.927
https://aclanthology.org/2023.emnlp-main.927
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca

[25] Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard Tang, Sean Welleck, Chitta Baral,
Tanmay Rajpurohit, Oyvind Tafjord, Ashish Sabharwal, Peter Clark, et al. Lila: A unified
benchmark for mathematical reasoning. arXiv preprint arXiv:2210.17517, 2022.

[26] Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta
Baral, and Ashwin Kalyan. Numglue: A suite of fundamental yet challenging mathematical
reasoning tasks. arXiv preprint arXiv:2204.05660, 2022.

[27] Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj
Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, Hamid Palangi,
Guoqing Zheng, Corby Rosset, Hamed Khanpour, and Ahmed Awadallah. Orca 2: Teaching
small language models how to reason, 2023.

[28] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

[29] OpenAI. Gpt-4 technical report, 2023.

[30] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

[31] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
arXiv preprint arXiv:2305.18290, 2023.

[32] Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

[33] Subhro Roy, Tim Vieira, and Dan Roth. Reasoning about quantities in natural language.
Transactions of the Association for Computational Linguistics, 3:1–13, 2015.

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv: 2307.09288, 2023.

[35] Shyam Upadhyay and Ming-Wei Chang. Draw: A challenging and diverse algebra word problem
set. Technical report, Citeseer, 2015.

[36] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

[37] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[38] Fei Yu, Anningzhe Gao, and Benyou Wang. Outcome-supervised verifiers for planning in
mathematical reasoning. arXiv preprint arXiv: 2311.09724, 2023.

[39] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv: 2309.12284, 2023.

[40] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

13

[41] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

[42] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. arXiv
preprint arXiv: 2309.05653, 2023.

[43] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. arXiv
preprint arXiv:2309.05653, 2023.

[44] Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew Chi-Chih Yao. Templatemath: Syntactic
data generation for mathematical problems, 2024.

[45] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206,
2023.

14

	Problem Setup
	Dataset Construction: Agent-Instruct
	Training
	Supervised Fine-Tuning Experiment (Iteration #1)
	Iterative Learning from both Positive and Negative Signals

	Evaluation
	Results
	Ablation Studies
	Math Benchmarks beyond GSM8k
	Contamination Check

	Related Works
	Conclusions

